IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Data Engineering and Information Management
Estimating Knowledge Category Coverage by Courses Based on Centrality in Taxonomy
Yiling DAIMasatoshi YOSHIKAWAYasuhito ASANO
著者情報
ジャーナル フリー

2020 年 E103.D 巻 5 号 p. 928-938

詳細
抄録

The proliferation of Massive Open Online Courses has made it a challenge for the user to select a proper course. We assume a situation in which the user has targeted on the knowledge defined by some knowledge categories. Then, knowing how much of the knowledge in the category is covered by the courses will be helpful in the course selection. In this study, we define a concept of knowledge category coverage and aim to estimate it in a semi-automatic manner. We first model the knowledge category and the course as a set of concepts, and then utilize a taxonomy and the idea of centrality to differentiate the importance of concepts. Finally, we obtain the coverage value by calculating how much of the concepts required in a knowledge category is also taught in a course. Compared with treating the concepts uniformly important, we found that our proposed method can effectively generate closer coverage values to the ground truth assigned by domain experts.

著者関連情報
© 2020 The Institute of Electronics, Information and Communication Engineers
前の記事 次の記事
feedback
Top