2021 Volume E104.D Issue 8 Pages 1204-1213
As an important type of science and technology service resource, energy consumption data play a vital role in the process of value chain integration between home appliance manufacturers and the state grid. Accurate electricity consumption prediction is essential for demand response programs in smart grid planning. The vast majority of existing prediction algorithms only exploit data belonging to a single domain, i.e., historical electricity load data. However, dependencies and correlations may exist among different domains, such as the regional weather condition and local residential/industrial energy consumption profiles. To take advantage of cross-domain resources, a hybrid energy consumption prediction framework is presented in this paper. This framework combines the long short-term memory model with an encoder-decoder unit (ED-LSTM) to perform sequence-to-sequence forecasting. Extensive experiments are conducted with several of the most commonly used algorithms over integrated cross-domain datasets. The results indicate that the proposed multistep forecasting framework outperforms most of the existing approaches.