2022 年 E105.D 巻 12 号 p. 2135-2138
Graph layout is a critical component in graph visualization. This paper proposes GRAPHULY, a graph u-nets-based neural network, for end-to-end graph layout generation. GRAPHULY learns the multi-level graph layout process and can generate graph layouts without iterative calculation. We also propose to use Laplacian positional encoding and a multi-level loss fusion strategy to improve the layout learning. We evaluate the model with a random dataset and a graph drawing dataset and showcase the effectiveness and efficiency of GRAPHULY in graph visualization.