2022 Volume E105.D Issue 7 Pages 1340-1342
Loan default prediction has been a significant problem in the financial domain because overdue loans may incur significant losses. Machine learning methods have been introduced to solve this problem, but there are still many challenges including feature multicollinearity, imbalanced labels, and small data sample problems. To replicate the success of deep learning in many areas, an effective regularization technique named muddling label regularization is introduced in this letter, and an ensemble of feed-forward neural networks is proposed, which outperforms machine learning and deep learning baselines in a real-world dataset.