2023 Volume E106.D Issue 12 Pages 1988-1996
As more and more programs handle personal information, the demand for secure handling of data is increasing. The protocol that satisfies this demand is called Secure function evaluation (SFE) and has attracted much attention from a privacy protection perspective. In two-party SFE, two mutually untrustworthy parties compute an arbitrary function on their respective secret inputs without disclosing any information other than the output of the function. For example, it is possible to execute a program while protecting private information, such as genomic information. The garbled circuit (GC) — a method of program obfuscation in which the program is divided into gates and the output is calculated using a symmetric key cipher for each gate — is an efficient method for this purpose. However, GC is computationally expensive and has a significant overhead even with an accelerator. We focus on hardware acceleration because of the nature of GC, which is limited to certain types of calculations, such as encryption and XOR. In this paper, we propose an architecture that accelerates garbling by running multiple garbling engines simultaneously based on the latest FPGA-based GC accelerator. In this architecture, managers are introduced to perform multiple rows of pipeline processing simultaneously. We also propose an optimized implementation of RAM for this FPGA accelerator. As a result, it achieves an average performance improvement of 26% in garbling the same set of programs, compared to the state-of-the-art (SOTA) garbling accelerator.