2023 Volume E106.D Issue 5 Pages 940-951
There are demands for high-speed and stable ground-to-train optical communication as a network environment for trains. The existing ground-to-train optical communication system developed by the authors uses a camera and a QPD (Quadrant photo diode) to capture beacon light. The problem with the existing system is that it is impossible to identify the ground station. In the system proposed in this paper, a beacon light modulated with the ID of the ground station is transmitted, and the ground station is identified by demodulating the image from the dual-port camera on the opposite side. In this paper, we developed an actual system and conducted experiments using a car on the road. The results showed that only one packet was lost with the ping command every 1 ms near handover. Although the communication device itself has a bandwidth of 100 Mbps, the throughput before and after the handover was about 94 Mbps, and only dropped to about 89.4 Mbps during the handover.