IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Lightweight and Fast Low-Light Image Enhancement Method Based on PoolFormer
Xin HUJinhua WANGSunhan XU
Author information
JOURNAL FREE ACCESS

2024 Volume E107.D Issue 1 Pages 157-160

Details
Abstract

Images captured in low-light environments have low visibility and high noise, which will seriously affect subsequent visual tasks such as target detection and face recognition. Therefore, low-light image enhancement is of great significance in obtaining high-quality images and is a challenging problem in computer vision tasks. A low-light enhancement model, LLFormer, based on the Vision Transformer, uses axis-based multi-head self-attention and a cross-layer attention fusion mechanism to reduce the complexity and achieve feature extraction. This algorithm can enhance images well. However, the calculation of the attention mechanism is complex and the number of parameters is large, which limits the application of the model in practice. In response to this problem, a lightweight module, PoolFormer, is used to replace the attention module with spatial pooling, which can increase the parallelism of the network and greatly reduce the number of model parameters. To suppress image noise and improve visual effects, a new loss function is constructed for model optimization. The experiment results show that the proposed method not only reduces the number of parameters by 49%, but also performs better in terms of image detail restoration and noise suppression compared with the baseline model. On the LOL dataset, the PSNR and SSIM were 24.098dB and 0.8575 respectively. On the MIT-Adobe FiveK dataset, the PSNR and SSIM were 27.060dB and 0.9490. The evaluation results on the two datasets are better than the current mainstream low-light enhancement algorithms.

Content from these authors
© 2024 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top