IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Knowledge, Information and Creativity Support System
Handling Dynamic Weights in Weighted Frequent Pattern Mining
Chowdhury Farhan AHMEDSyed Khairuzzaman TANBEERByeong-Soo JEONGYoung-Koo LEE
Author information
JOURNAL FREE ACCESS

2008 Volume E91.D Issue 11 Pages 2578-2588

Details
Abstract
Even though weighted frequent pattern (WFP) mining is more effective than traditional frequent pattern mining because it can consider different semantic significances (weights) of items, existing WFP algorithms assume that each item has a fixed weight. But in real world scenarios, the weight (price or significance) of an item can vary with time. Reflecting these changes in item weight is necessary in several mining applications, such as retail market data analysis and web click stream analysis. In this paper, we introduce the concept of a dynamic weight for each item, and propose an algorithm, DWFPM (dynamic weighted frequent pattern mining), that makes use of this concept. Our algorithm can address situations where the weight (price or significance) of an item varies dynamically. It exploits a pattern growth mining technique to avoid the level-wise candidate set generation-and-test methodology. Furthermore, it requires only one database scan, so it is eligible for use in stream data mining. An extensive performance analysis shows that our algorithm is efficient and scalable for WFP mining using dynamic weights.
Content from these authors
© 2008 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top