Abstract
In this paper, we propose a new model off automatically constructing an acronym dictionary. The proposed model generates possible acronym candidates from a definition, and then verifies each acronymdefinition pair with a Naive Bayes classifier based on web documents. In order to achieve high dictionary quality, the proposed model utilizes the characteristics of acronym generation types: a syllable-based generation type, a word-based generation type, and a mixed generation type. Compared with a previous model recognizing an acronym-definition pair in a document, the proposed model verifying a pair in web documents improves approximately 50% recall on obtaining acronym-definition pairs from 314 Korean definitions. Also, the proposed model improves 7.25% F-measure on verifying acronym-definition candidate pairs by utilizing specialized classifiers with the characteristics of acronym generation types.