Abstract
The selection of effective features is especially important in achieving highly accurate speech recognition. Although the mel-cepstrum is a popular and effective feature for speech recognition, it is still unclear that the filterbank adopted in the mel-cepstrum always produces the optimal performance regardless of the phonetic environment of any specific speech recognition task. In this paper, we propose a new cepstral domain feature extraction approach utilizing the entropic distance-based filterbank for highly accurate speech recognition. Experimental results showed that the cepstral features employing the proposed filterbank reduce the relative error by 31% for clean as well as noisy speech compared to the mel-cepstral features.