IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
High-Speed Low-Complexity Architecture for Reed-Solomon Decoders
Yung-Kuei LUMing-Der SHIEH
Author information
JOURNAL FREE ACCESS

2010 Volume E93.D Issue 7 Pages 1824-1831

Details
Abstract

This paper presents a high-speed, low-complexity VLSI architecture based on the modified Euclidean (ME) algorithm for Reed-Solomon decoders. The low-complexity feature of the proposed architecture is obtained by reformulating the error locator and error evaluator polynomials to remove redundant information in the ME algorithm proposed by Truong. This increases the hardware utilization of the processing elements used to solve the key equation and reduces hardware by 30.4%. The proposed architecture retains the high-speed feature of Truong's ME algorithm with a reduced latency, achieved by changing the initial settings of the design. Analytical results show that the proposed architecture has the smallest critical path delay, latency, and area-time complexity in comparison with similar studies. An example RS(255, 239) decoder design, implemented using the TSMC 0.18µm process, can reach a throughput rate of 3Gbps at an operating frequency of 375MHz and with a total gate count of 27, 271.

Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top