IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Processing Natural Speech Variability for Improved Verbal Human-Computer Interaction
Adaptation to Pronunciation Variations in Indonesian Spoken Query-Based Information Retrieval
Dessi Puji LESTARISadaoki FURUI
Author information
JOURNAL FREE ACCESS

2010 Volume E93.D Issue 9 Pages 2388-2396

Details
Abstract
Recognition errors of proper nouns and foreign words significantly decrease the performance of ASR-based speech applications such as voice dialing systems, speech summarization, spoken document retrieval, and spoken query-based information retrieval (IR). The reason is that proper nouns and words that come from other languages are usually the most important key words. The loss of such words due to misrecognition in turn leads to a loss of significant information from the speech source. This paper focuses on how to improve the performance of Indonesian ASR by alleviating the problem of pronunciation variation of proper nouns and foreign words (English words in particular). To improve the proper noun recognition accuracy, proper-noun specific acoustic models are created by supervised adaptation using maximum likelihood linear regression (MLLR). To improve English word recognition, the pronunciation of English words contained in the lexicon is fixed by using rule-based English-to-Indonesian phoneme mapping. The effectiveness of the proposed method was confirmed through spoken query based Indonesian IR. We used Inference Network-based (IN-based) IR and compared its results with those of the classical Vector Space Model (VSM) IR, both using a tf-idf weighting schema. Experimental results show that IN-based IR outperforms VSM IR.
Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top