IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Processing Natural Speech Variability for Improved Verbal Human-Computer Interaction
Distant Speech Recognition Using a Microphone Array Network
Alberto Yoshihiro NAKANOSeiichi NAKAGAWAKazumasa YAMAMOTO
Author information
JOURNAL FREE ACCESS

2010 Volume E93.D Issue 9 Pages 2451-2462

Details
Abstract
In this work, spatial information consisting of the position and orientation angle of an acoustic source is estimated by an artificial neural network (ANN). The estimated position of a speaker in an enclosed space is used to refine the estimated time delays for a delay-and-sum beamformer, thus enhancing the output signal. On the other hand, the orientation angle is used to restrict the lexicon used in the recognition phase, assuming that the speaker faces a particular direction while speaking. To compensate the effect of the transmission channel inside a short frame analysis window, a new cepstral mean normalization (CMN) method based on a Gaussian mixture model (GMM) is investigated and shows better performance than the conventional CMN for short utterances. The performance of the proposed method is evaluated through Japanese digit/command recognition experiments.
Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top