IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Multi-Objective Genetic Programming with Redundancy-Regulations for Automatic Construction of Image Feature Extractors
Ukrit WATCHAREERUETAITetsuya MATSUMOTOYoshinori TAKEUCHIHiroaki KUDONoboru OHNISHI
Author information
JOURNAL FREE ACCESS

2010 Volume E93.D Issue 9 Pages 2614-2625

Details
Abstract
We propose a new multi-objective genetic programming (MOGP) for automatic construction of image feature extraction programs (FEPs). The proposed method was originated from a well known multi-objective evolutionary algorithm (MOEA), i.e., NSGA-II. The key differences are that redundancy-regulation mechanisms are applied in three main processes of the MOGP, i.e., population truncation, sampling, and offspring generation, to improve population diversity as well as convergence rate. Experimental results indicate that the proposed MOGP-based FEP construction system outperforms the two conventional MOEAs (i.e., NSGA-II and SPEA2) for a test problem. Moreover, we compared the programs constructed by the proposed MOGP with four human-designed object recognition programs. The results show that the constructed programs are better than two human-designed methods and are comparable with the other two human-designed methods for the test problem.
Content from these authors
© 2010 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top