IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Speaker-Independent Speech Emotion Recognition Based on Two-Layer Multiple Kernel Learning
Yun JINPeng SONGWenming ZHENGLi ZHAOMinghai XIN
Author information
JOURNAL FREE ACCESS

2013 Volume E96.D Issue 10 Pages 2286-2289

Details
Abstract
In this paper, a two-layer Multiple Kernel Learning (MKL) scheme for speaker-independent speech emotion recognition is presented. In the first layer, MKL is used for feature selection. The training samples are separated into n groups according to some rules. All groups are used for feature selection to obtain n sparse feature subsets. The intersection and the union of all feature subsets are the result of our feature selection methods. In the second layer, MKL is used again for speech emotion classification with the selected features. In order to evaluate the effectiveness of our proposed two-layer MKL scheme, we compare it with state-of-the-art results. It is shown that our scheme results in large gain in performance. Furthermore, another experiment is carried out to compare our feature selection method with other popular ones. And the result proves the effectiveness of our feature selection method.
Content from these authors
© 2013 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top