IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
A Robust Signal Recognition Method for Communication System under Time-Varying SNR Environment
Jing-Chao LIYi-Bing LIShouhei KIDERATetsuo KIRIMOTO
Author information
JOURNAL FREE ACCESS

2013 Volume E96.D Issue 12 Pages 2814-2819

Details
Abstract
As a consequence of recent developments in communications, the parameters of communication signals, such as the modulation parameter values, are becoming unstable because of time-varying SNR under electromagnetic conditions. In general, it is difficult to classify target signals that have time-varying parameters using traditional signal recognition methods. To overcome this problem, this study proposes a novel recognition method that works well even for such time-dependent communication signals. This method is mainly composed of feature extraction and classification processes. In the feature extraction stage, we adopt Shannon entropy and index entropy to obtain the stable features of modulated signals. In the classification stage, the interval gray relation theory is employed as suitable for signals with time-varying parameter spaces. The advantage of our method is that it can deal with time-varying SNR situations, which cannot be handled by existing methods. The results from numerical simulation show that the proposed feature extraction algorithm, based on entropy characteristics in time-varying SNR situations,offers accurate clustering performance, and the classifier, based on interval gray relation theory, can achieve a recognition rate of up to 82.9%, even when the SNR varies from -10 to -6 dB.
Content from these authors
© 2013 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top