IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Medical Imaging
A Survey on Statistical Modeling and Machine Learning Approaches to Computer Assisted Medical Intervention: Intraoperative Anatomy Modeling and Optimization of Interventional Procedures
Ken'ichi MOROOKAMasahiko NAKAMOTOYoshinobu SATO
Author information
JOURNAL FREE ACCESS

2013 Volume E96.D Issue 4 Pages 784-797

Details
Abstract
This paper reviews methods for computer assisted medical intervention using statistical models and machine learning technologies, which would be particularly useful for representing prior information of anatomical shape, motion, and deformation to extrapolate intraoperative sparse data as well as surgeons' expertise and pathology to optimize interventions. Firstly, we present a review of methods for recovery of static anatomical structures by only using intraoperative data without any preoperative patient-specific information. Then, methods for recovery of intraoperative motion and deformation are reviewed by combining intraoperative sparse data with preoperative patient-specific stationary data, which is followed by a survey of articles which incorporated biomechanics. Furthermore, the articles are reviewed which addressed the used of statistical models for optimization of interventions. Finally, we conclude the survey by describing the future perspective.
Content from these authors
© 2013 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top