IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Unsupervised Dimension Reduction via Least-Squares Quadratic Mutual Information
Janya SAINUIMasashi SUGIYAMA
Author information
JOURNAL FREE ACCESS

2014 Volume E97.D Issue 10 Pages 2806-2809

Details
Abstract

The goal of dimension reduction is to represent high-dimensional data in a lower-dimensional subspace, while intrinsic properties of the original data are kept as much as possible. An important challenge in unsupervised dimension reduction is the choice of tuning parameters, because no supervised information is available and thus parameter selection tends to be subjective and heuristic. In this paper, we propose an information-theoretic approach to unsupervised dimension reduction that allows objective tuning parameter selection. We employ quadratic mutual information (QMI) as our information measure, which is known to be less sensitive to outliers than ordinary mutual information, and QMI is estimated analytically by a least-squares method in a computationally efficient way. Then, we provide an eigenvector-based efficient implementation for performing unsupervised dimension reduction based on the QMI estimator. The usefulness of the proposed method is demonstrated through experiments.

Content from these authors
© 2014 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top