J-STAGE Home  >  Publications - Top  > Bibliographic Information

IEICE Transactions on Information and Systems
Vol. E97.D (2014) No. 6 pp. 1557-1566

Language:

http://doi.org/10.1587/transinf.E97.D.1557

Regular Section

Social media such as microblogs have become so pervasive such that it is now possible to use them as sensors for real-world events and memes. While much recent research has focused on developing automatic methods for filtering and summarizing these data streams, we explore a different trend called social curation. In contrast to automatic methods, social curation is characterized as a human-in-the-loop and sometimes crowd-sourced mechanism for exploiting social media as sensors. Although social curation web services like Togetter, Naver Matome and Storify are gaining popularity, little academic research has studied the phenomenon. In this paper, our goal is to investigate the phenomenon and potential of this new field of social curation. First, we perform an in-depth analysis of a large corpus of curated microblog data. We seek to understand why and how people participate in this laborious curation process. We then explore new ways in which information retrieval and machine learning technologies can be used to assist curators. In particular, we propose a novel method based on a learning-to-rank framework that increases the curator's productivity and breadth of perspective by suggesting which novel microblogs should be added to the curated content.

Copyright © 2014 The Institute of Electronics, Information and Communication Engineers

Article Tools

Share this Article