IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Regular Section
Robust Visual Tracking via Coupled Randomness
Author information

2015 Volume E98.D Issue 5 Pages 1080-1088


Tracking algorithms for arbitrary objects are widely researched in the field of computer vision. At the beginning, an initialized bounding box is given as the input. After that, the algorithms are required to track the objective in the later frames on-the-fly. Tracking-by-detection is one of the main research branches of online tracking. However, there still exist two issues in order to improve the performance. 1) The limited processing time requires the model to extract low-dimensional and discriminative features from the training samples. 2) The model is required to be able to balance both the prior and new objectives' appearance information in order to maintain the relocation ability and avoid the drifting problem. In this paper, we propose a real-time tracking algorithm called coupled randomness tracking (CRT) which focuses on dealing with these two issues. One randomness represents random projection, and the other randomness represents online random forests (ORFs). In CRT, the gray-scale feature is compressed by a sparse measurement matrix, and ORFs are used to train the sample sequence online. During the training procedure, we introduce a tree discarding strategy which helps the ORFs to adapt fast appearance changes caused by illumination, occlusion, etc. Our method can constantly adapt to the objective's latest appearance changes while keeping the prior appearance information. The experimental results show that our algorithm performs robustly with many publicly available benchmark videos and outperforms several state-of-the-art algorithms. Additionally, our algorithm can be easily utilized into a parallel program.

Content from these authors
© 2015 The Institute of Electronics, Information and Communication Engineers
Previous article Next article