Abstract
In this paper, we propose a method for reconstructing 3D sequential patterns from multiple images without knowing exact image correspondences and without calibrating linear camera sensitivity parameters on intensity. The sequential pattern is defined as a series of colored 3D points. We assume that the series of the points are obtained in multiple images, but the correspondence of individual points is not known among multiple images. For reconstructing sequential patterns, we consider a camera projection model which combines geometric and photometric information of objects. Furthermore, we consider camera projections in the frequency space. By considering the multi-view relationship on the new projection model, we show that the 3D sequential patterns can be reconstructed without knowing exact correspondence of individual image points in the sequential patterns; moreover, the recovered 3D patterns do not suffer from changes in linear camera sensitivity parameters. The efficiency of the proposed method is tested using real images.