Abstract
This paper proposes an algorithm that solves the node-to-set disjoint paths problem in an n-Möbius cube in polynomial-order time of n. It also gives a proof of correctness of the algorithm as well as estimating the time complexity, O(n4), and the maximum path length, 2n-1. A computer experiment is conducted for n=1,2,...,31 to measure the average performance of the algorithm. The results show that the average time complexity is gradually approaching to O(n3) and that the maximum path lengths cannot be attained easily over the range of n in the experiment.