IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532
Special Section on Human Cognition and Behavioral Science and Technology
Predicting Performance of Collaborative Storytelling Using Multimodal Analysis
Shogo OKADAMi HANGKatsumi NITTA
Author information
JOURNAL FREE ACCESS

2016 Volume E99.D Issue 6 Pages 1462-1473

Details
Abstract

This study focuses on modeling the storytelling performance of the participants in a group conversation. Storytelling performance is one of the fundamental communication techniques for providing information and entertainment effectively to a listener. We present a multimodal analysis of the storytelling performance in a group conversation, as evaluated by external observers. A new multimodal data corpus is collected through this group storytelling task, which includes the participants' performance scores. We extract multimodal (verbal and nonverbal) features regarding storytellers and listeners from a manual description of spoken dialog and from various nonverbal patterns, including each participant's speaking turn, utterance prosody, head gesture, hand gesture, and head direction. We also extract multimodal co-occurrence features, such as head gestures, and interaction features, such as storyteller utterance overlapped with listener's backchannel. In the experiment, we modeled the relationship between the performance indices and the multimodal features using machine-learning techniques. Experimental results show that the highest accuracy (R2) is 0.299 for the total storytelling performance (sum of indices scores) obtained with a combination of verbal and nonverbal features in a regression task.

Content from these authors
© 2016 The Institute of Electronics, Information and Communication Engineers
Previous article Next article
feedback
Top