IEICE Transactions on Information and Systems
Online ISSN : 1745-1361
Print ISSN : 0916-8532

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Local density estimation procedure for autoregressive modeling of point process data
Nat PAVASANTTakashi MORITAMasayuki NUMAOKen-ichi FUKUI
著者情報
ジャーナル フリー 早期公開

論文ID: 2023EDL8084

この記事には本公開記事があります。
詳細
抄録

We proposed a procedure to pre-process data used in a vector autoregressive (VAR) modeling of a temporal point process by using kernel density estimation. Vector autoregressive modeling of point-process data, for example, is being used for causality inference. The VAR model discretizes the timeline into small windows, and creates a time series by the presence of events in each window, and then models the presence of an event at the next time step by its history. The problem is that to get a longer history with high temporal resolution required a large number of windows, and thus, model parameters. We proposed the local density estimation procedure, which, instead of using the binary presence as the input to the model, performed kernel density estimation of the event history, and discretized the estimation to be used as the input. This allowed us to reduce the number of model parameters, especially in sparse data. Our experiment on a sparse Poisson process showed that this procedure vastly increases model prediction performance.

著者関連情報
© 2024 The Institute of Electronics, Information and Communication Engineers
feedback
Top