日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
機械力学,計測,自動制御,ロボティクス,メカトロニクス
二重ダイヤフラム型起歪体による鉗子カセンサの力分解能等方化
野田 幸矢高山 俊男小俣 透
著者情報
ジャーナル フリー

2017 年 83 巻 855 号 p. 17-00253

詳細
抄録

In minimally invasive surgery robots, force sensing is required to improve its manipulability. To perform delicate surgery, three-axis force sensing is desired. However, in general, the force resolution in the axial direction is worse than that in the radial direction owning to a slender shape of a forceps. This paper proposes a double diaphragm structure for forceps flexural elements. The distance between the two diaphragms can adjust the rigidity in the radial direction without changing the rigidity in the axial direction when the thickness of the diaphragm is constant. Thus, the thickness of the diaphragm adjusts the rigidity in the axial direction, while the distance between the two diaphragms adjusts the rigidity in the radial direction. A planar spiral cutting in the cross section of the diaphragm can reduce the maximum stress applied on it. Moreover, by adjusting the two spiral phases and direction, the crosstalk of the radial and axial forces can be reduced. In 5 mm forceps simulation, the rigidity of the axial direction is almost equal to that of the radial direction when the distance between the two diaphragms is 6.0 mm. We performed experiments of 10 mm forceps model and confirmed that the resolution of the radial direction is almost equal to that of the axial direction when the distance between the two diaphragms is 12.0 mm.

著者関連情報
© 2017 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top