日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
材料力学,機械材料,材料加工
累積ハザード関数法による蒸気タービン損傷情報の2変量統計解析
藤山 一成高見 彰藏重 湧
著者情報
ジャーナル フリー

2020 年 86 巻 882 号 p. 19-00325

詳細
抄録

Bivariate log-normal distribution analyses coupled with the cumulative hazard function method were conducted on the specific output class of 8 steam turbine units with components such as rotors, moving blades, nozzles, casings and other auxiliary equipment of high-, intermediate- and low-pressure turbines. The damage phenomena were classified into erosion, crack, deformation, corrosion, creep void formation and material degradation with corresponding components. Operation time and start up cycles for damage incidence in respective units were collected and statistically analyzed adding the non-failed data as well as failed data. After applying the bivariate log-normal distribution regression to those data sets, the prescribed failure probability was imposed to construct the equal probability ellipse contours as the quadratic function of operation time and start-up cycles. To determine whether the events were time dependent or cycle dependent, the shape and inclination of the contours were utilized. The order of event incidence was determined by using the lower end values of the major axis of equal probability contours. Although the order of event incidence could show variations according to the prescribed failure probability values, the examples for 90% probability ellipse contours were demonstrated here. The assessment results showed that the statistical analyses were effective for investigating the damage incidental scenario making and maintenance planning for actual plants.

著者関連情報
© 2020 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top