日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
動力・エネルギーシステムの最前線2020
アルカリ水電解の気液二相流-イオン輸送三次元連成数値解析
兒玉 学鳥居 健次郎平井 秀一郎
著者情報
ジャーナル フリー

2020 年 86 巻 883 号 p. 19-00354

詳細
抄録

In this paper, two-phase flow and ion transportation in an alkaline water electrolysis are discussed with three-dimensional coupling numerical simulation to reveal the influence of a bubble in the alkaline water electrolysis on the cell efficiency to achieve high-efficiency energy conversion of electrical energy to hydrogen energy. Two-phase flow numerical simulation model is not a void ratio model that is mainly used in previous studies, but is a direct simulation model with Lattices Kinetic Scheme that enables microscale flow simulation. Moreover, the concentration distribution is calculated with Maxwell equation and Nernst-Planks equation, and is fully coupled to the three-dimensional two-phase flow. The numerical simulations are conducted for w/o bubble condition and w/ bubble condition with varying applied current density to evaluate the influence of a bubble at various operating conditions. The results show that the bubble in the electrolyte induces mixing flow between a bubble and an electrode, and the concentration of potassium hydroxide (KOH) around the anode is increased. This increase of concentration increases the conductivity of the electrolyte and suppresses the overpotential in the electrolyte. Moreover, the anodic activation overpotential is also suppressed by the increased concentration on the anode. These overvoltage suppressions become much more prominent at high current density operating condition of the cell. The mixing with the bubble changes the concentration around the bubble. However, concentration distant from the bubble also changes and suppresses the overpotential with the change in electrical field.

著者関連情報
© 2020 一般社団法人日本機械学会
前の記事 次の記事
feedback
Top