日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
交通・物流
鉄道車両における再粘着制御時の台車振動に起因する空転誤検知現象の考察
山口 泰平道辻 洋平牧島 信吾髙橋 諭
著者情報
ジャーナル オープンアクセス

2022 年 88 巻 905 号 p. 21-00277

詳細
抄録

Wheel slips in railway vehicles cause poor acceleration and damage to wheels and rails. Re-adhesion control is widely used to resolve wheel slips in electric motor cars. In re-adhesion control, it has been an important problem to consider appropriately the vehicle dynamic motion, which affects the control performance greatly. In this study, we investigate the mechanism and characteristics of slip misdetection phenomena which occur due to bogie vibration excited during re-adhesion control. We construct a three-dimensional vehicle model including roll motion with parallel Cardan drives. The tangential force coefficient model between wheels and rails includes the influence of translational velocity, slip velocity and wheel loads. The simulation model is validated by comparison with measurements in a test run of a real vehicle conducted in previous research. Simulation results illustrate the behavior of the bogie under traction such as the difference of wheel loads of four wheels and the attitude of the bogie frame. It is shown that continual slip misdetection can occur because of pitch and roll vibration of the bogie frame which is excited during re-adhesion control when the primary vertical damping coefficient is small. The misdetection is prevented by changing the amount of motor torque reduction in re-adhesion control. The appropriate range of the amount of reduction to avoid the misdetection gets narrower as the primary vertical damping coefficient decreases. The primary vertical suspension stiffness and characteristic of tangential force coefficient also affect the occurrence of the misdetection.

著者関連情報
© 2022 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事
feedback
Top