日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
計算力学
多数粒子の位置変動を考慮した逐次局所近似による粒子強化複合材料のマルチスケール確率応力解析
新井 悠希坂田 誠一郎
著者情報
ジャーナル オープンアクセス

2022 年 88 巻 911 号 p. 22-00083

詳細
抄録

This paper discusses a multiscale stochastic stress analysis of a particle reinforced composite material with a successive approximation based on the local sensitivity analysis of microscopic stresses with respect to a random location variation of particles. A microscopic geometrical random variation will have a significant influence on the microscopic stress fields in a heterogeneous material, and probabilistic analysis of the stresses should be encouraged for estimation of probabilistic properties of the stresses for more reliable structural design. Further, a more complicated microstructure reflecting an actual material considering wider analysis region, for example, including a larger number of inclusions in composite materials will be required for a practical application. This numerical analysis will be very expensive, and therefore a successive local sensitivity analysis-based approximate multiscale stochastic analysis method has been proposed for unidirectional fiber reinforced composite material. In this research, this approach is extended to a three-dimensional problem, and effectiveness of the approach for the multiscale stochastic analysis of a particle reinforced composite material is investigated. In this paper, the problem setting and outline of the methodology are provided, and the effectiveness and accuracy of the presented method are discussed with the numerical results.

著者関連情報
© 2022 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top