日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
材料力学,機械材料,材料加工
複数CNNによる橋梁損傷同定におけるベイズ推定による出力結合手法の検討
山田 涼太岩崎 篤遠藤 義英中村 洋幸中野 主久山岸 貴俊
著者情報
ジャーナル オープンアクセス

2024 年 90 巻 934 号 p. 24-00037

詳細
抄録

This research concerns a bridge condition identification method using a convolutional neural network (CNN). Currently, bridges are mainly inspected visually by humans, and it is difficult to detect damage that does not appear on the surface. Therefore, a condition evaluation method using sensors is required. In this study, a damage identification method is proposed by classifying the images, visualized by vibration analysis such as spectrogram or FFT of acceleration response of a bridge, using CNN. The effect of analysis methods, the presence or absence of a time component, the processing of the image itself, and frequency resolution on diagnostic accuracy are clarified. The overall Identification rate is higher for spectrograms containing more information, and for damage with less effect on vibration, the FFT has a higher Identification rate. Furthermore, a method to improve accuracy by combining these multiple CNNs using Bayesian estimation is proposed. Accurately identifying damage, the degree of which varies incrementally, was a complex problem for a single CNN. Combining multiple CNNs with various characteristics using attribution probabilities has reduced misclassification and improved identification rates over a single CNN.

著者関連情報
© 2024 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top