日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761
機械力学,計測,自動制御,ロボティクス,メカトロニクス
切頂八面体テンセグリティ3次元格子の接続行列の系統的な構成方法とその最適設計への応用
長瀬 賢二永田 大次郎橋本 和磨
著者情報
ジャーナル オープンアクセス

2024 年 90 巻 938 号 p. 24-00097

詳細
抄録

This study concerns establishing a mathematical model to analyze and design tensegrity structures built from repetitions of elementary structures, called the truncated regular octahedral tensegrity (TROT). The TROT has three pairs of parallel square faces, each perpendicular to the others, and is preferable to build three-dimensional (3D) tensegrity lattices. The squares of each the pair are twisted for the structural stability purpose, and one simple way to form a lattice is to use the mirror image as its neighbor. Another connection type is also possible by employing the quadruplex prismatic tensegrity (QPT) as a bridge between the TROT. The connectivity matrix plays a central role in the analysis and design of tensegrity structures. This paper provides a systematic way to construct the connectivity matrices for these TROT tensegrity lattices. For a given space to fulfill and a force to bear, the number of the TROT, node locations (shape), length of the QPT bridge, etc. can be chosen arbitrarily. The provided connectivity matrix formulae allow us to automatically change these parameters during the evaluation process in the structural design. To show the effectiveness of the proposed formulae, for identical compressive forces from all sides, a minimal-mass design subjected to the force equilibrium (force balance) and yielding/buckling stress constraints is shown. A dynamical simulation of a TROT lattice under a uniaxial compressive force is also shown to evaluate the equilibrium state of the system.

著者関連情報
© 2024 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top