日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

格子ボルツマン法を用いた流れ場のトポロジー最適化において部分的にNewton法を用いることによる収束速度の向上
米倉 一男寒野 善博
著者情報
ジャーナル フリー 早期公開

論文ID: 15-00337

この記事には本公開記事があります。
詳細
抄録
We propose a Newton-gradient-hybrid optimization method for fluid topology optimization. The method accelerates convergence and reduces computation time. In addition, the fluid-solid boundaries are clearly distinguished. In the method, the optimization process and flow computation are executed concurrently. The flow computation utilizes the lattice Boltzmann method (LBM), and the optimization algorithm partly utilizes a Hessian matrix. Due to the formulation of LBM and the optimization algorithm, the Hessian matrix is a diagonal matrix. Since the optimization problem is nonconvex problem, the Hessian matrix is not generally positive semidefinite. Hence, we employ a gradient method for a component whose corresponding Hessian matrix elements are negative. We compare the optimization results with those of conventional gradient method and show that the convergence is accelerated and the fluid-solid boundaries are clearly distinguished.
著者関連情報
© 2015 一般社団法人日本機械学会
feedback
Top