日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

FTIR赤外吸収スペクトルを用いた排出ガスTHC濃度推定モデル開発
薮下 広高永岡 真吉岡 雅也森 雄一
著者情報
ジャーナル フリー 早期公開

論文ID: 20-00358

この記事には本公開記事があります。
詳細
抄録

A novel total hydrocarbon (THC) emission concentration estimation model is proposed for reduction of engine development cost as well as simplification of measurement system. The model is based on machine learning algorithm including the least absolute shrinkage and selection operator (LASSO) regression and bagging techniques. Major features of the proposal model are taking the absorbance spectrum of Fourier transform infrared (FTIR) spectrometer as input and incorporating not only spectra of the engine exhaust gas but also those of individual hydrocarbon and inorganic gas components as training data set. This method was validated on the exhaust gas before the catalyst of a gasoline engine. The results show an error of less than 5% in both steady and transient operating conditions, outperforming the 20 % error of conventional regression model using only the reference hydrocarbon concentrations. We also evaluate the contribution to performance improvements in THC estimation of employing FTIR spectrum and incorporating spectrum information of gas components, respectively.

著者関連情報
© 2021 一般社団法人日本機械学会
feedback
Top