日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

多孔質構造体の固有振動設計を目的とするミクロ孔構造の形状最適化
藤田 隼平下田 昌利
著者情報
ジャーナル フリー 早期公開

論文ID: 21-00200

この記事には本公開記事があります。
詳細
抄録

In this paper, we present a shape optimization method for periodic microstructures to maximize a specified vibration eigenvalue of a porous macrostructure. The homogenized elastic moduli calculated by the homogenization method are applied to the macrostructure to connect the microstructures with the macro structure. The KS function is introduced to solve the repeated eigenvalue problem hidden in vibration eigenvalue optimization. The shape optimization problem subject to the volume constraint considering the microstructures is formulated as a distributed-parameter optimization problem, and the shape gradient function is derived by the Lagrange multiplier method and the adjoint variable method. The shape gradient function is applied as a distributed force to update the design boundaries of the unit cells of the microstructures by the H1 gradient method. The smooth boundary shapes obtained by the H1 gradient method are suitable for manufacturing with a 3D printer. In the numerical examples, the eigenvalues and the optimum shapes were compared changing the number of the domains of the microstructures in the macrostructure. As a result, the effectiveness of shape optimization method for microstructures aimed at maximizing the vibration eigenvalue of a macrostructure was confirmed.

著者関連情報
© 2021 一般社団法人日本機械学会
feedback
Top