日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

マルチモーダル変分自己符号化器を用いたエンドミル加工における加工異常の検知
小田 和哉諏訪 晴彦村上 浩二
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 22-00290

この記事には本公開記事があります。
詳細
抄録

Anomaly detection for predictive maintenance in the cutting process is one of the challenging problems in shop-floor management. A modern machine learning approach, including deep learning, has been widely studied for the last decade. This study focuses on the multimodality of various cutting time-series data for extracting features of cutting status and proposes a multimodal variational autoencoder (MVAE) method. We collect a time series of vibration acceleration of a cutting tool and a main spindle motor load. Various cutting data is collected by conducting cutting experiments under diverse cutting conditions. Normal and abnormal data are collected, and only normal data is used to train MVAE. MVAE learns a so-called generative model, which is implicit but stochastic, capable of reproducing original time series data. Because MVAE is an unsupervised learning method, it does not require abnormal data during training. Therefore, it is considered suitable for tools management where it is difficult to collect abnormal data. Euclidean distance is employed to evaluate the normality of a given cutting status on the latent space acquired by MVAE. We demonstrate the applicability of the proposed MVAE method in anomaly detection for end-milling by comparing it with conventional machine learning methods such as autoencoder.

著者関連情報
© 2023 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
feedback
Top