日本機械学会論文集
Online ISSN : 2187-9761
ISSN-L : 2187-9761

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

進化過程の微分に基づくノンパラメトリック最適手法の提案(ベンチマーク関数および履歴曲線の同定に関する検証)
赤岩 秀哉深沢 剛司藤田 聡
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 24-00021

この記事には本公開記事があります。
詳細
抄録

Recent advancements in digitalization have resulted in the daily collection of vast amounts of data. To capitalize on this wealth of information, it is imperative to address multivariate issues, many of which are classified as NP-hard problems. One potential solution lies in metaheuristic optimization methods, which offer shorter search times and can generate approximate solutions. These techniques have seen applications across various domains. Nevertheless, a significant challenge posed by numerous representative metaheuristic methods involves the necessity for parameter configurations, the values of which notably impact convergence accuracy. This study proposes a novel optimization methodology grounded in metaheuristic optimization techniques that eliminate the need for problem-dependent accuracy affecting parameter settings. The authors assessed the efficacy of our method using standard benchmark functions and engineering benchmark problems. Furthermore, we employed it to search for multiple variables, such as historical curves, while conducting a nonlinear seismic response analysis in a real-world application scenario. Our findings confirm that our approach is not only more cost-effective but also superior in accuracy compared to previously used metaheuristic optimization methods.

著者関連情報
© 2024 一般社団法人日本機械学会

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
feedback
Top