YAKUGAKU ZASSHI
Online ISSN : 1347-5231
Print ISSN : 0031-6903
ISSN-L : 0031-6903
Symposium Reviews
Naturally Engineered Glycolipid Biosurfactants Leading to Distinctive Self-assembling Properties
Dai KITAMOTO
Author information
JOURNAL FREE ACCESS

2008 Volume 128 Issue 5 Pages 695-706

Details
Abstract
  Biosurfactants (BS) are functional amphiphilic compounds produced by a variety of microorganisms. They show unique properties (e.g. mild production conditions, lower toxicity, and environmental compatibility) compared to chemically synthesized counterparts. The numerous advantages of BS have prompted applications not only in the food, cosmetic, and pharmaceutical industries but in energy and environmental technologies as well. Mannosylerythritol lipids (MELs) are one of the most promising BS known, and are produced at yields of over 100 g/l from vegetable oils by yeast strains belonging to the genus Pseudozyma. MELs exhibit excellent surface-active and self-assembling properties leading to the formation of different lyotropic liquid crystals such as sponge (L3), bicontinuous cubic (V2) and lamella (Lα) phases. They also show versatile biochemical actions, including antitumor and differentiation-inducing activities against human leukemia cells, rat pheochromocytoma cells and mouse melanoma cells. MELs also display high binding affinity toward different immunoglobulins and lectins, indicating great potentials as new affinity ligands for the glycoproteins. More significantly, the cationic liposomes bearing MELs increase dramatically the efficiency of gene transfection into mammalian cells via membrane fusion processes. The yeast BS should thus be novel nanobiomaterials, and broaden their applications in various advanced technologies.
Content from these authors
© 2008 by the PHARMACEUTICAL SOCIETY OF JAPAN
Previous article Next article
feedback
Top