YAKUGAKU ZASSHI
Online ISSN : 1347-5231
Print ISSN : 0031-6903
ISSN-L : 0031-6903
Symposium Reviews
Development of a Novel Adenovirus Vector Exhibiting MicroRNA-mediated Suppression of the Leaky Expression of Adenovirus Genes
Kahori ShimizuFuminori SakuraiMasashi TachibanaHiroyuki Mizuguchi
Author information
JOURNAL FREE ACCESS

2012 Volume 132 Issue 12 Pages 1407-1412

Details
Abstract

  Replication-incompetent adenovirus (Ad) vectors are widely used in gene therapy studies because they are beneficial as a gene delivery vehicle enabling high-titer production and highly efficient gene transfer into a wide spectrum of dividing and non-dividing cells in vitro and in vivo. Theoretically, Ad genes should not be expressed following transduction with a replication-incompetent Ad vector. However, leaky expression of viral genes is known to occur following transduction with a conventional Ad vector, which leads to a cellular immunity against Ad proteins as well as Ad protein-induced toxicity. Such Ad protein-induced cellular immunity and toxicity frequently cause both an elimination of Ad vector-transduced cells and tissue damage, leading to short-lived transgene expression. To date, no detailed analysis of the leaky expression profile of Ad genes has been performed. First, we systematically examined the expression profiles of Ad genes in cells using real-time RT-PCR following transduction with a conventional Ad vector. The results revealed that significant expression was found for E2A, E4, and pIX genes. Next, in order to suppress the leaky expression of Ad genes, complementary sequences for microRNA (miRNA) were inserted into the 3′-untranslated region of the E2A, E4, or pIX genes. miRNAs are an approximately 22-nt length non-coding RNA, and bind to imperfectly complementary sequences in the 3′-untranslated region of target mRNA, leading to suppression of gene expression via post-transcriptional regulation. Incorporation of the miRNA-targeted sequences significantly suppressed the leaky expression of Ad genes in an miRNA-dependent manner.

Content from these authors
© 2012 by the PHARMACEUTICAL SOCIETY OF JAPAN
Previous article Next article
feedback
Top