YAKUGAKU ZASSHI
Online ISSN : 1347-5231
Print ISSN : 0031-6903
ISSN-L : 0031-6903
Regular Articles
Effects of Manufacturing Conditions on Pharmaceutical Properties of Petrolatum Ointment
Yuki AshizukaEijiro Horisawa
Author information
JOURNAL FREE ACCESS

2016 Volume 136 Issue 8 Pages 1161-1169

Details
Abstract

 Oleaginous white petrolatum ointment (WP ointment) is one of the most commonly used dosage forms in the preparation of topical products. In general, WP ointments containing medium chain fatty acid triglycerides (MCT) are manufactured through a process of melting, mixing, agitating, and cooling. To investigate the pharmaceutical properties of WP ointments in greater detail, we examined manufacturing factors which could potentially influence the pharmaceutical properties of the finished product. WP ointment samples containing 10% MCT were stirred with a homogenizer and a paddle mixer at 65°C, then the homogenizer was stopped. Next, the paddle-mixer was stopped at several planned temperature points at which different samples were taken. Each sample was then cooled under the following planned conditions: rapid-cooling [−50°C/h] and slow-cooling [−7.5°C/h]. The pharmaceutical properties of each WP ointment sample, along with the appearance (Optical/digital microscope), hardness (Rheometer), and bleeding ability (100 Mesh wire-net cone) were measured. Then, release profiles were performed with a WP ointment using the model active ingredient Vitamin D. As a result, high hardness, low bleeding ability and low release profile were observed in the WP ointment samples that were manufactured under the condition of stopping the paddle-mixer at 40°C. However, the influence of cooling speed was observed to affect only hardness. Through optical microscopic observation, it was found that the appearance of WP ointment samples differed depending on the conditions under which they were manufactured. In this study, it was clear that the pharmaceutical properties of WP ointment samples were particularly influenced by the paddle-mixer stopping temperature.

Content from these authors
© 2016 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top