Experimental Animals
Online ISSN : 1881-7122
Print ISSN : 1341-1357
ISSN-L : 0007-5124
Volume 63, Issue 1
Displaying 1-12 of 12 articles from this issue
Review
  • Kimie Niimi, Eiki Takahashi
    2014 Volume 63 Issue 1 Pages 1-9
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    The senescence-accelerated mouse (SAM) was developed by selective breeding of the AKR/J strain, based on a graded score for senescence, which led to the development of both senescence-accelerated prone (SAMP), and senescence-accelerated resistant (SAMR) strains. Among the SAMP strains, SAMP6 is well characterized as a model of senile osteoporosis, but its brain and neuronal functions have not been well studied. We therefore decided to characterize the central nervous system of SAMP6, in combination with different behavioral tests and analysis of its biochemical and pharmacological properties. Multiple behavioral tests revealed higher motor activity, reduced anxiety, anti-depressant activity, motor coordination deficits, and enhanced learning and memory in SAMP6 compared with SAMR1. Biochemical and pharmacological analyses revealed several alterations in the dopamine and serotonin systems, and in long-term potentiation (LTP)-related molecules. In this review, we discuss the possibility of using SAMP6 as a model of brain function.
    Download PDF (888K)
Originals
  • Kouyou Akiyama, Kentaro Katayama, Takehito Tsuji, Tetsuo Kunieda
    2014 Volume 63 Issue 1 Pages 11-19
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    The development of the axial skeleton is a complex process, consisting of segmentation and differentiation of somites and ossification of the vertebrae. The autosomal recessive skeletal fusion with sterility (sks) mutation of the mouse causes skeletal malformations due to fusion of the vertebrae and ribs, but the underlying defects of vertebral formation during embryonic development have not yet been elucidated. For the present study, we examined the skeletal phenotypes of sks/sks mice during embryonic development and the chromosomal localization of the sks locus. Multiple defects of the axial skeleton, including fusion of vertebrae and fusion and bifurcation of ribs, were observed in adult and neonatal sks/sks mice. In addition, we also found polydactyly and delayed skull ossification in the sks/sks mice. Morphological defects, including disorganized vertebral arches and fusions and bifurcations of the axial skeletal elements, were observed during embryonic development at embryonic day 12.5 (E12.5) and E14.5. However, no morphological abnormality was observed at E11.5, indicating that defects of the axial skeleton are caused by malformation of the cartilaginous vertebra and ribs at an early developmental stage after formation and segmentation of the somites. By linkage analysis, the sks locus was mapped to an 8-Mb region of chromosome 4 between D4Mit331 and D4Mit199. Since no gene has already been identified as a cause of malformation of the vertebra and ribs in this region, the gene responsible for sks is suggested to be a novel gene essential for the cartilaginous vertebra and ribs.
    Download PDF (2437K)
  • Shunkei Enoki, Akinori Shimizu, Chisato Hayashi, Hirotake Imanishi, Os ...
    2014 Volume 63 Issue 1 Pages 21-30
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Supplementary material
    Previous reports have shown that transmitochondrial mito-mice with nuclear DNA from Mus musculus and mtDNA from M. spretus do not express respiration defects, whereas those with mtDNA from Rattus norvegicus cannot be generated from ES cybrids with mtDNA from R. norvegicus due to inducing significant respiration defects and resultant losing multipotency. Here, we isolated transmitochondrial cybrids with mtDNA from various rodent species classified between M. spretus and R. norvegicus, and compared the O2 consumption rates. The results showed a strong negative correlation between phylogenetic distance and reduction of O2 consumption rates, which would be due to the coevolution of nuclear and mitochondrial genomes and the resultant incompatibility between the nuclear genome from M. musculus and the mitochondrial genome from the other rodent species. These observations suggested that M. caroli was an appropriate mtDNA donor to generate transmitochondrial mito-mice with nuclear DNA from M. musculus. Then, we generated ES cybrids with M. caroli mtDNA, and found that these ES cybrids expressed respiration defects without losing multipotency and can be used to generate transmitochondrial mito-mice expressing mitochondrial disorders.
    Download PDF (1920K)
  • Yoshiaki Tabuchi, Shigehito Wada, Mika Ikegame, Ayako Kariya, Yukihiro ...
    2014 Volume 63 Issue 1 Pages 31-44
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    We have developed an immortalized oral epithelial cell line, ROE2, from fetal transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene. The cells grew continuously at either a permissive temperature of 33°C or an intermediate temperature of 37°C. At the nonpermissive temperature of 39°C, on the other hand, growth decreased significantly, and the Sub-G1 phase of the cell cycle increased, indicating that the cells undergo apoptosis at a nonpermissive temperature. Histological and immunocytochemical analyses revealed that ROE2 cells at 37°C had a stratified epithelial-like morphology and expressed cytokeratins Krt4 and Krt13, marker proteins for oral nonkeratinized epithelial cells. Global-scale comprehensive microarray analysis, coupled with bioinformatics tools, demonstrated a significant gene network that was obtained from the upregulated genes. The gene network contained 16 genes, including Cdkn1a, Fos, Krt13, and Prdm1, and was associated mainly with the biological process of skin development in the category of biological functions, organ development. These four genes were validated by quantitative real-time polymerase chain reaction, and the results were nearly consistent with the microarray data. It is therefore anticipated that this cell line will be useful as an in vitro model for studies such as physiological functions, as well as for gene expression in oral epithelial cells.
    Download PDF (8164K)
  • Kazuya Sakata, Masaki Ohmuraya, Kimi Araki, Chigure Suzuki, Satoshi Id ...
    2014 Volume 63 Issue 1 Pages 45-53
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Serine protease inhibitor Kazal type 1 (SPINK1; mouse homologue Spink3) was initially discovered as a trypsin-specific inhibitor in the pancreas. However, previous studies have suggested that SPINK1/Spink3 is expressed in a wide range of normal tissues and tumors, although precise characterization of its gene expression has not been described in adulthood. To further analyze Spink3 expression, we generated two mouse lines in which either lacZ or Cre recombinase genes were inserted into the Spink3 locus by Cre-loxP technology. In Spink3lacZ mice, β-galactosidase activity was found in acinar cells of the pancreas and kidney, as well as epithelial cells of the bronchus in the lung, but not in the gastrointestinal tract or liver. Spink3cre knock-in mice were crossed with Rosa26 reporter (R26R) mice to monitor Spink3 promoter activity. In Spink3cre;R26R mice, β-galactosidase activity was found in acinar cells of the pancreas, kidney, lung, and a small proportion of cells in the gastrointestinal tract and liver. These data suggest that Spink3 is widely expressed in endoderm-derived tissues, and that Spink3cre knock-in mice are a useful tool for establishment of a conditional knockout mice to analyze Spink3 function not only in normal tissues, but also in tumors that express SPINK1/Spink3.
    Download PDF (3298K)
  • Yuichiro Higuchi, Kenji Kawai, Masafumi Yamamoto, Miyuki Kuronuma, Yas ...
    2014 Volume 63 Issue 1 Pages 55-62
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Supplementary material
    The interaction between transplanted cells and host tissues is important for the growth and maintenance of transplanted cells. To analyze the mechanisms of these interactions, a systemic fluorescent protein-expressing mouse is a useful recipient. In this study, we generated a novel NOG strain, which strongly expresses enhanced green fluorescent protein (EGFP; PgkEGFP-NOG), especially in the liver, kidney, gastrointestinal tract, and testis. Because the host tissues expressed EGFP, xenotransplanted human cancer cells were clearly identified as EGFP-negative colonies in PgkEGFP-NOG mice. Immunohistochemical analysis revealed that EGFP-expressing stromal tissues formed a complicated tumor microenvironment within xenograft tissues. Moreover, a similar microenvironment was observed in human iPS cell-derived teratomas. Collectively, these results indicated that a suitable microenvironment is essential for the growth and maintenance of xenotransplanted cells and that PgkEGFP-NOG mice represent a useful animal model for analyzing the mechanisms of microenvironment formation.
    Download PDF (2171K)
  • Ji Young Hwang, Kyung Min Lee, Yun Hwa Kim, Hye Min Shim, Young Kyung ...
    2014 Volume 63 Issue 1 Pages 63-72
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Coxsackieviruses are important pathogens in children and the outcomes of neonatal infection can be serious or fatal. However, the outcomes of coxsackievirus infection during early gestation are not well defined. In this study, we examined the possibility of vertical transmission of coxsackievirus B3 (CVB3) and the effects of CVB3 infection on early pregnancy of ICR mice. We found that the coxsackievirus and adenovirus receptor (CAR) was highly expressed not only in embryos but also in the uterus of ICR mice. CVB3 replicated in the uterus 1 to 7 days post-infection (dpi), with the highest titer at 3 dpi. The pregnancy loss rate in mice infected with CVB3 during early gestation was 38.3%, compared to 4.7% and 2.7% in mock-infected and UV-inactivated-CVB3 infected pregnant mice, respectively. These data suggest that the uterus and embryo, which express abundant CAR, are important targets of CVB3 and that the vertical transmission of CVB3 during early gestation induces pregnancy loss.
    Download PDF (2367K)
  • Ruixia Zeng, YiBo Zhang, Peng Du
    2014 Volume 63 Issue 1 Pages 73-78
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Melanocortin 4 receptor (MC4R), which is associated with inherited human obesity, is involoved in food intake and body weight of mammals. To study the relationships between MC4R gene polymorphism and body weight in Beagle dogs, we detected and compared the nucleotide sequence of the whole coding region and 3′- and 5′- flanking regions of the dog MC4R gene (1214 bp). In 120 Beagle dogs, two SNPs (A420C, C895T) were identified and their relation with body weight was analyzed with RFLP-PCR method. The results showed that the SNP at A420C was significantly associated with canine body weight trait when it changed amino acid 101 of the MC4R protein from asparagine to threonine, while canine body weight variations were significant in female dogs when MC4R nonsense mutation at C895T. It suggested that the two SNPs might affect the MC4R gene’s function which was relative to body weight in Beagle dogs. Therefore, MC4R was a candidate gene for selecting different size dogs with the MC4R SNPs (A420C, C895T) being potentially valuable as a genetic marker.
    Download PDF (1215K)
  • Yoshiko Nakagawa, Takashi Yamamoto, Ken-Ichi Suzuki, Kimi Araki, Naoki ...
    2014 Volume 63 Issue 1 Pages 79-84
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Supplementary material
    Genome editing with site-specific nucleases, such as zinc-finger nucleases or transcription activator-like effector nucleases (TALENs), and RNA-guided nucleases, such as the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated) system, is becoming the new standard for targeted genome modification in various organisms. Application of these techniques to the manufacture of knockout mice would be greatly aided by simple and easy methods for genotyping of mutant and wild-type pups among litters. However, there are no detailed or comparative reports concerning the identification of mutant mice generated using genome editing technologies. Here, we genotyped TALEN-derived enhanced green fluorescent protein (eGFP) knockout mice using a combination of approaches, including fluorescence observation, heteroduplex mobility assay, restriction fragment length polymorphism analysis and DNA sequencing. The detection sensitivities for TALEN-induced mutations differed among these methods, and we therefore concluded that combinatorial testing is necessary for the screening and determination of mutant genotypes. Since the analytical methods tested can be carried out without specialized equipment, costly reagents and/or sophisticated protocols, our report should be of interest to a broad range of researchers who are considering the application of genome editing technologies in various organisms.
    Download PDF (1043K)
  • Hiromi Hanaka, Tsuyoshi Hamada, Masataka Ito, Hiroyuki Nakashima, Keng ...
    2014 Volume 63 Issue 1 Pages 85-92
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Non-alcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and fibrosis and is believed to develop via a “two-hit process”; however, its pathophysiology remains unclear. Fibroblast growth factors (FGFs) are heparin-binding polypeptides with diverse biological activities in many developmental and metabolic processes. In particular, FGF5 is associated with high blood pressure. We investigated the function of FGF5 in vivo using spontaneously Fgf5 null mice and explored the role of diet in the development of NASH. Mice fed a high-fat diet gained little weight and had higher serum alanine transaminase, aspartate amino transferase, and non-high-density lipoprotein-cholesterol levels. Liver histology indicated marked inflammation, focal necrosis, fat deposition, and fibrosis, similar to the characteristics of NASH. FGF5 and a high-fat diet play significant roles in the pathophysiology of hepatic fibrosis and Fgf5 null mice may provide a suitable model for liver fibrosis or NASH.
    Download PDF (5862K)
  • Eva M. Pérez-Merino, Jesús M. Usón-Casaús, ...
    2014 Volume 63 Issue 1 Pages 93-98
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Our objectives were to standarize the procedure needed to reproduce a similar surgical scene which a pediatric surgeon would face on repairing a Bochdalek hernia in newborns and to define the optimal time period for hernia development that achieve a realistic surgical scenario with minimimal animal suffering. Twenty New Zealand white rabbits weighing 3-3.5 kg were divided into four groups depending on the time frame since hernia creation to thoracoscopic repair: 48 h, 72 h, 96 h and 30 days. Bochdalek trigono was identified and procedures for hernia creation and thoracoscopic repair were standarized. Blood was collected for hematology (red blood cells, white blood cells, platelets, hemoglobin and hematocrit), biochemistry (blood urea nitrogen, creatinine, alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase and creatine kinase) and gas analysis (arterial blood pH, partial pressure of oxygen, partial pressure of carbón dioxide, oxygen saturation and bicarbonate) at baseline and before the surgial repairment. Glucocorticoid metabolites concentration in faeces was measured. Thoracoscopy video recordings were evaluated by six pediatric surgeons and rated from 0 to 10 according to similarities with congenital diaphragmatic hernia in newborn and with its thoracoscopic approach. Statistical methods included the analysis of variance, and comparisons between groups were followed by a post-hoc Tukey’s test. Fourty -eight h showed to be the optimal time frame to obtain a diaphragmatic hernia similar to newborn scenario from a surgical point of view with minimal stress for the animals.
    Download PDF (1100K)
  • Masayuki Mori, Geng Tian, Akira Ishikawa, Keiichi Higuchi
    2014 Volume 63 Issue 1 Pages 99-106
    Published: 2014
    Released on J-STAGE: February 07, 2014
    JOURNAL FREE ACCESS
    Mouse strains show polymorphisms in the amino acid sequences of serum amyloid A 1 (SAA1) and serum amyloid A 2 (SAA2). Major laboratory mouse strains are classified based on the sequence as carrying the A haplotype (e.g., BALB/c) or B haplotype (e.g., SJL/J) of the Saa1 and Saa2 gene unit. We attempted to elucidate the diversity of the mouse Saa1 and Saa2 family genes at the nucleotide sequence level by a systematic survey of 6 inbred mouse strains from 4 Mus subspecies, including Mus musculus domesticus, Mus musculus musculus, Mus musculus castaneus, and Mus spretus. Saa1 and Saa2 genes were obtained from the mouse genome by PCR amplification, and each full-length nucleotide sequence was determined. We found that Mus musculus castaneus mice uniquely possess 2 divergent Saa1 genes linked on chromosome 7. Overall, the mouse strains had distinct composite patterns of amino acid substitutions at 9 positions in SAA1 and SAA2 isoforms. The mouse strains also had distinct composite patterns of 2 polymorphic upstream regulatory elements that influenced gene transcription in in vitro reporter assays. B haplotype mice were revealed to possess an LTR insertion in the downstream region of Saa1. Collectively, these results indicate that the mouse Saa genes hold broader diversity and greater complexity than previously known, and these characteristics were likely attained through gene duplication and repeated gene conversion events in the Mus lineage.
    Download PDF (1782K)
feedback
Top