After the Fukushima nuclear accident, Japanese power generation planning needs to be rearranged reflecting on the technical movement in both power supply and demand sides; Fukushima nuclear accident has complicated the positioning of nuclear energy in Japan's long-term power generation mix due to its public acceptance and other associated issues such as nuclear waste management; the studies are more required about the maximum grid integration of variable renewables such as PV and wind power which are expected to potentially replace nuclear energy; in power demand side, an expected future introduction of electric vehicle (EV) and plug-in hybrid vehicle (PHEV) will have an impact on the grid management in electric power system. In this context, it is important to develop a computational tool to comprehensively analyze the optimal power generation mix and dispatch in a consistent way. This paper develops a dynamic high time-resolution optimal power generation mix model, as large-scale linear programming model with 18 million constraints and 8 million endogenous variables, and analyzes the optimal deployment of variable renewables (VR) and electric vehicles, considering the future possible nuclear scenario and CO
2 regulation policy in Japan. As calculated optimal solutions, electric vehicle plays an important role to integrating variable renewable and treating the imbalance of VR surplus output.
View full abstract