Journal of PHYSIOLOGICAL ANTHROPOLOGY
Online ISSN : 1880-6805
Print ISSN : 1880-6791
Volume 30, Issue 5
Displaying 1-4 of 4 articles from this issue
ORIGINALS
  • Hirotaka Gima, Shohei Ohgi, Satoru Morita, Hiroshi Karasuno, Takayuki ...
    Article type: Originals
    2011 Volume 30 Issue 5 Pages 179-186
    Published: September 30, 2011
    Released on J-STAGE: October 01, 2011
    JOURNAL FREE ACCESS
    This study's aim was to evaluate the characteristics of newborn and young infants' spontaneous lower extremity movements by using dynamical systems analysis. Participants were 8 healthy full-term newborn infants (3 boys, 5 girls, mean birth weight and gestational age were 3070.6 g and 39 weeks). A tri-axial accelerometer measured limb movement acceleration in 3-dimensional space. Movement acceleration signals were recorded during 200 s from just below the ankle when the infant was in an active alert state and lying supine (sampling rate 200 Hz). Data were analyzed linearly and nonlinearly. As a result, the optimal embedding dimension showed more than 5 at all times. Time dependent changes started at 6 or 7, and over the next four months decreased to 5 and from 6 months old, increased. The maximal Lyapnov exponent was positive for all segments. The mutual information is at its greatest range at 0 months. Between 3 and 4 months the range in results is narrowest and lowest in value. The mean coefficient of correlation for the x-axis component was negative and y-axis component changed to a positive value between 1 month old and 4 months old. Nonlinear time series analysis suggested that newborn and young infants' spontaneous lower extremity movements are characterized by a nonlinear chaotic dynamics with 5 to 7 embedding dimensions. Developmental changes of an optimal embedding dimension showed a U-shaped phenomenon. In addition, the maximal Lyapnov exponents were positive for all segments (0.79–2.99). Infants' spontaneous movement involves chaotic dynamic systems that are capable of generating voluntary skill movements.
    Download PDF (1519K)
  • Katsuo Fujiwara, Takeo Kiyota, Aida Mammadova, Chie Yaguchi
    Article type: Originals
    2011 Volume 30 Issue 5 Pages 187-194
    Published: September 30, 2011
    Released on J-STAGE: October 01, 2011
    JOURNAL FREE ACCESS
    We investigated age-related changes and sex differences in adaptability of anticipatory postural control in children. Subjects comprised 449 children (4–12 years old) and 109 young adults (18–29 years old). Subjects stood with eyes closed on a force-platform fixed to a floor oscillator. We conducted five trials of 1-minute oscillation (0.5 Hz frequency, 2.5 cm amplitude) in the anteroposterior direction. Postural steadiness was quantified as the mean speed of the center of pressure in the anteroposterior direction (CoPy). In young adults, CoPy speed decreased rapidly until the third trial for both sexes. Adaptability was evaluated by changes in steadiness. The adaptability of children was categorized as “good,” “moderate,” and “poor,” compared with a standard variation of the mean CoPy speed regression line between the first and fifth trials in young adults. Results were as follows: (1) anticipatory postural control adaptability starts to develop from age 6 in boys and 5 in girls, and greatly improves at age 7–8 in boys and 6 in girls; (2) the adaptability of children at age 11–12 (74% of boys and 63% of girls were categorized as “good”) has not yet reached the same level as for young adults; (3) the adaptability at age 11–12 for girls is temporarily disturbed due to early puberty.
    Download PDF (1358K)
  • Ryo Fujita, Yoshinori Tanaka, Yasuhiro Saihara, Mitsuya Yamakita, Dais ...
    Article type: Originals
    2011 Volume 30 Issue 5 Pages 195-201
    Published: September 30, 2011
    Released on J-STAGE: October 01, 2011
    JOURNAL FREE ACCESS
    The objectives of this paper were to determine the level of oxidative stress in atrophied gastrocnemius, and to verify the effect of molecular hydrogen (H2) saturated alkaline electrolyzed water (HSW) on gastrocnemius atrophy by modifying the redox status, indicated by 8-hydroxy-2′-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and superoxide dismutase (SOD)-like activity. Female Wistar rats were divided into four groups: (1) the control (CONT); (2) the Hindlimb unloading (HU, for 3 weeks) given purified normal water (HU-NW); (3) the HU given alkaline electrolyzed reduced water (HU-AEW); and (4) the HU given HSW (HU-HSW). We showed that 8-OHdG, but not MDA, significantly increased by 149% and 145% in HU-NW and HU-AEW, respectively, when compared with CONT. In contrast, there was a trend toward suppression in 8-OHdG levels (increased by 95% compared with CONT) by treatment of HSW, though this effect was not prominent. Additionally, SOD-like activity significantly increased in both HU-NW (184%) and HU-AEW (199%) when compared with CONT. This result suggests the elevation of O2−· in the atrophied gastrocnemius. However, upregulation of SOD-like activity in the HU-HSW was increased by only 169% compared with CONT, though this difference is too small to detect statistical significance. HU led to 13% and 15% reduction of gastrocnemius wet weights in HU-NW and HU-AEW, respectively, compared with CONT. And the reduction of gastrocnemius wet weights in HU-HSW was attenuated by 7% compared with CONT. The gastrocnemius wet weights in the HU-HSW group were significantly greater than those in the HU-AEW, but not statistically significant with HU-NW. These results indicate that HU causes an increase in oxidative stress, but, in this experimental protocol, continuous consumption of HSW during HU does not demonstrate successful attenuation of oxidative stress and HU-mediated gastrocnemius atrophy.
    Download PDF (577K)
  • Won-Gyu Yoo, Se-Yeon Park, Mi-Ra Lee
    Article type: Originals
    2011 Volume 30 Issue 5 Pages 203-207
    Published: September 30, 2011
    Released on J-STAGE: October 01, 2011
    JOURNAL FREE ACCESS
    A high prevalence and incidence of neck and shoulder pain is present in the working population, especially sedentary workers. Recent findings have indicated that the flexion-relaxation (FR) ratio in the cervical erector spinae (CES) muscles might be a significant criteria of neuromuscular impairment and function. Additionally, the active cervical range of motion (ROM) is frequently used for discriminating between individuals with pain and those who are asymptomatic. The purpose of the present study was to examine the relationship between the active cervical ROM and the FR ratio in a sample of regular visual display terminal (VDT) workers. In total, 20 asymptomatic male VDT workers were recruited. Active cervical ROM was measured by a cervical ROM (CROM) instrument. Surface electromyography (EMG) was used to collect myoelectrical signals from the CES muscles, and the FR ratio was calculated for statistical analysis. Pearson correlation coefficients were used to quantify the linear relationship between the active cervical ROM and the FR ratio. The values obtained for the FR ratio in the right CES muscles correlated significantly with the active cervical ROM measured in flexion (r=0.73, p<0.01), left lateral flexion (r=0.64, p<0.01), and left rotation (r=0.60, p<0.01). Flexion (r=0.74, p<0.01) and right lateral flexion (r=0.61, p<0.01) positively correlated with the left FR ratio. Extension and right rotation showed either a very weak or no correlation with the mean value of the right and left FR ratio. Our findings suggested that the cervical FR ratio had a positive correlation with cervical movements, and that changes of the activation patterns in CES demonstrated as cervical FR ratio are associated with reduction of the cervical range of motion including flexion and lateral flexion. In addition, muscular dysfunction of the CES could occur in regular computer workers prior to occurrence of pain; this means that the FR ratio could be used to evaluate the potential risk of neck discomfort in computer workers.
    Download PDF (794K)
feedback
Top