Journal of the Magnetics Society of Japan
Online ISSN : 1882-2932
Print ISSN : 1882-2924
ISSN-L : 1882-2924
早期公開論文
早期公開論文の4件中1~4を表示しています
  • T. Nakano, S. Miyazaki, Y. Ozaki, K. Koike, D. Inokuchi
    論文ID: 2303R002
    発行日: 2023年
    [早期公開] 公開日: 2023/02/02
    ジャーナル オープンアクセス 早期公開

      Ferrite thin film magnetic core integrated radio frequency inductors (RFIs) were investigated in order to realize RFIs with a smaller size, higher driving frequency, and higher quality factor (Q). The ferrite thin films were fabricated by low-temperature spin-spray deposition assuming adaptation to the photolithography process for inductor fabrication with two different compositions: Ni0.16Zn0.20Fe2.64O4+δ (NZFO) and Co0.11Fe2.89O4+δ (CFO). The RFI with CFO had a 34% higher inductance and 43% Q improvement compared with the air core RFI at a frequency of 1 GHz. It was confirmed that the complex permeability of the films was correlated with the frequency characteristics of the RFIs with the ferrite thin films. The results suggest that integrating ferrite thin film in RFIs is effective for future mobile device applications.

  • Y. Hane, K. Nakamura
    論文ID: 2303R003
    発行日: 2023年
    [早期公開] 公開日: 2023/02/02
    ジャーナル オープンアクセス 早期公開

      It is essential to establish a simple and practical method for quantitatively estimating the iron loss considering the dynamic hysteresis behavior to further improve the efficiency of electric machines. In a previous study, a novel simple magnetic circuit model representing the dynamic hysteresis characteristics was presented by incorporating a play model, one of the phenomenological dc hysteresis models, and a Cauer circuit, which can consider the skin effect. It was demonstrated that this magnetic circuit model could accurately calculate the hysteresis loops and iron loss even under PMW excitation for magnetic reactors made of several types of core materials in a short time. However, this method can only be used for an object with a simple shape, such as a ring core. Hence, this paper describes that the previously proposed magnetic circuit model is extended to a reluctance network analysis (RNA) to expand the application range. Furthermore, the proposed method was experimentally validated using an interior permanent magnet (IPM) synchronous motor driven by a PWM converter as the examination target.

  • H. Yano, K. Sugahara
    論文ID: 2303R004
    発行日: 2023年
    [早期公開] 公開日: 2023/02/02
    ジャーナル オープンアクセス 早期公開

      Magnetic Moment Method (MMM) is well known for its ”lightweight” and simplicity of implementation; however, meshing must be carefully treated to obtain accurate results. In this paper, the MMM with the idea of the Magnetic Surface Charge method is proposed that is free from the meshing problem. Accelerator magnets; a C-shaped dipole and a quadrupole magnet, are analyzed, and it is shown that the proposed method outperforms currently available finite-element packages with respect to the CPU time and accuracy of the magnetic field.

  • S. Kayama, Y. Ichikawa, T. Nagayoshi, S. Kawamura, K. Ogawa, D. Uchino ...
    論文ID: 2305R001
    発行日: 2023年
    [早期公開] 公開日: 2023/02/02
    ジャーナル オープンアクセス 早期公開

      Contact conveyance by rollers is used in thin steel-plate production lines, and scratches on the surface of the plates and plating defects may occur. Therefore, noncontact magnetic levitation conveyance of thin steel plates using the attractive force of electromagnets has been proposed. We previously studied a magnetic levitation system for thin steel plates using both electromagnets and permanent magnets. However, the vibration characteristics of levitated steel plates have not yet been studied. In this study, magnetic levitation experiments were conducted on steel plates using the optimum arrangement of permanent magnets for each condition obtained by the genetic algorithm, and the stability of levitation was experimentally investigated. The results confirmed that the levitation performance of the steel plates was different for each gap. As the gap increased and approached the optimum gap obtained in the GA search, the attractive force of the permanent magnet became appropriate for assisting levitation. This optimized arrangement of permanent magnets reduces the deflection of the levitated steel plate, and the vibration could be suppressed. Thus, the proposed method can change the vibration characteristics of a levitated steel plate and improve levitation stability.

feedback
Top