日本建築学会構造系論文集
Online ISSN : 1881-8153
Print ISSN : 1340-4202
ISSN-L : 1340-4202
壁面接触型ドローンの風切り音がランダムフォレストを用いた機械学習による外壁タイル張り仕上げの剥離診断に及ぼす影響
田中 大貴伊藤 洋介河辺 伸二
著者情報
ジャーナル フリー

2026 年 91 巻 839 号 p. 63-74

詳細
抄録

The hammering test for diagnosing tile detachment on exterior walls faces issues such as high scaffolding costs and variability due to inspector differences. This study uses a wall-contact-type UAV with a vibration-based test hammer and applies Random Forest-based machine learning to diagnose detachment from the impact sound. The purpose of this study is to clarify the effect of UAV aerodynamic noise on feature extraction and diagnostic accuracy, and to improve performance via hyperparameter tuning. Results show that aerodynamic noise reduces the mean F1 Score, but tuning improves accuracy even under noisy conditions, supporting the method’s feasibility in practice.

著者関連情報
© 2026, 日本建築学会
前の記事 次の記事
feedback
Top