日本建築学会技術報告集
Online ISSN : 1881-8188
Print ISSN : 1341-9463
ISSN-L : 1341-9463
情報システム技術
深層学習による被害写真を用いたRC方立壁の損傷度識別器の生成
吉岡 智和
著者情報
ジャーナル フリー

2020 年 26 巻 64 号 p. 1252-1257

詳細
抄録

The purpose of this research is to develop a methodology to classify the degree of earthquake damage with no specialists, in order to support the early restoration of the damaged condominium. In order to realize this, we performed fine tuning of the pre-trained convolutional neural network (VGG16), and developed a methodology to identify the damage index from damage photographs of RC partial walls. As a result, some classifiers that could classify the damage index into three ranks (less equals to III, IV, V) with accuracy rates of 91% for the input damage photographs were generated.

著者関連情報
© 2020, 日本建築学会
前の記事 次の記事
feedback
Top