日本建築学会技術報告集
Online ISSN : 1881-8188
Print ISSN : 1341-9463
ISSN-L : 1341-9463
情報システム技術
深層学習を用いた3D isovistの処理による建築空間の視界の分析手法
福本 健人鳥羽 潤堀江 周平前田 雄飛加戸 啓太
著者情報
ジャーナル フリー

2023 年 29 巻 73 号 p. 1642-1647

詳細
抄録

In the field of architecture and urban planning, the isovist theory is used for evaluating spaces. In this theory, metrics, such as area or edge length, are employed to simplify higher-dimension isovist volumes. In this study, we propose a visibility evaluation method using a deep neural network as a feature extractor that extracts features from isovist point clouds. A classification and clustering network were tested by evaluating five architectures. The results show that the networks can extract valuable features and analyze the visibility using architectural characters, spatial spread, their direction, etc.

著者関連情報
© 2023, 日本建築学会
前の記事 次の記事
feedback
Top