Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
Characterization of a Cellobiose Phosphorylase from a Hyperthermophilic Eubacterium, Thermotoga maritima MSB8
Eranna RAJASHEKHARAMotomitsu KITAOKAYeon-Kye KIMKiyoshi HAYASHI
Author information
JOURNAL FREE ACCESS

2002 Volume 66 Issue 12 Pages 2578-2586

Details
Abstract
  The cepA putative gene encoding a cellobiose phosphorylase of Thermotoga maritima MSB8 was cloned, expressed in Escherichia coli BL21-codonplus-RIL and characterized in detail. The maximal enzyme activity was observed at pH 6.2 and 80°C. The energy of activation was 74 kJ/mol. The enzyme was stable for 30 min at 70°C in the pH range of 6-8. The enzyme phosphorolyzed cellobiose in an random-ordered bi bi mechanism with the random binding of cellobiose and phosphate followed by the ordered release of D-glucose and α-D-glucose-1-phosphate. The Km for cellobiose and phosphate were 0.29 and 0.15 mM respectively, and the kcat was 5.4 s-1. In the synthetic reaction, D-glucose, D-mannose, 2-deoxy-D-glucose, D-glucosamine, D-xylose, and 6-deoxy-D-glucose were found to act as glucosyl acceptors. Methyl-β-D-glucoside also acted as a substrate for the enzyme and is reported here for the first time as a substrate for cellobiose phosphorylases. D-Xylose had the highest (40 s-1) kcat followed by 6-deoxy-D-glucose (17 s-1) and 2-deoxy-D-glucose (16 s-1). The natural substrate, D-glucose with the kcat of 8.0 s-1 had the highest (1.1×104 M-1 s-1) kcat/Km compared with other glucosyl acceptors. D-Glucose, a substrate of cellobiose phosphorylase, acted as a competitive inhibitor of the other substrate, α-D-glucose-1-phosphate, at higher concentrations.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2002 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top