Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Organic Chemistry Regular Paper
Production of 2-Phenylethanol in Roses as the Dominant Floral Scent Compound from L-Phenylalanine by Two Key Enzymes, a PLP-Dependent Decarboxylase and a Phenylacetaldehyde Reductase
Miwa SAKAIHiroshi HIRATAHironori SAYAMAKazuya SEKIGUCHIHiroaki ITANOTatsuo ASAIHideo DOHRAMasakazu HARANaoharu WATANABE
Author information
JOURNAL FREE ACCESS

2007 Volume 71 Issue 10 Pages 2408-2419

Details
Abstract

We investigated the biosynthetic pathway for 2-phenylethanol, the dominant floral scent compound in roses, using enzyme assays. L-[2H8] Phenylalanine was converted to [2H8] phenylacetaldehyde and [2H8]-2-phenylethanol by two enzymes derived from the flower petals of R. ‘Hoh-Jun,’ these being identified as pyridoxal-5′-phosphate-dependent L-aromatic amino acid decarboxylase (AADC) and phenylacetaldehyde reductase (PAR). The activity of rose petal AADC to yield phenylacetaldehyde was nine times higher toward L-phenylalanine than toward its D-isomer, and this conversion was not inhibited by iproniazid, a specific inhibitor of monoamine oxidase. Under aerobic conditions, rose petal AADC stoichiometrically produced NH3 together with phenylacetaldehyde during the course of decarboxylation and oxidation, followed by the hydrolysis of L-phenylalanine. Phenylacetaldehyde was subsequently converted to 2-phenylethanol by the action of PAR. PAR showed specificity toward several volatile aldehydes.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2007 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top