Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Microbiology & Fermentation Technology Regular Papers
Disruption of the Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in Gluconobacter oxydans
Hiroshi HABETokuma FUKUOKATomotake MORITADai KITAMOTOToshiharu YAKUSHIKazunobu MATSUSHITAKeiji SAKAKI
著者情報
ジャーナル フリー

2010 年 74 巻 7 号 p. 1391-1395

詳細
抄録
Dihydroxyacetone (DHA) production from glycerol by Gluconobacter oxydans is an industrial form of fermentation, but some problems exist related to microbial DHA production. For example, glycerol inhibits DHA production and affects its biological activity. G. oxydans produces both DHA and glyceric acid (GA) from glycerol simultaneously, and membrane-bound glycerol dehydrogenase and membrane-bound alcohol dehydrogenases are involved in the two reactions, respectively. We discovered that the G. oxydans mutant ΔadhA, in which the membrane-bound alcohol dehydrogenase-encoding gene (adhA) was disrupted, significantly improved its ability to grow in a higher concentration of glycerol and to produce DHA compared to a wild-type strain. ΔadhA grew on 220 g/l of initial glycerol and produced 125 g/l of DHA during a 3-d incubation, whereas the wild-type did not. Resting ΔadhA cells converted 230 g/l of glycerol aqueous solution to 139.7 g/l of DHA during a 3-d incubation. The inhibitory effect of glycerate sodium salt on ΔadhA was investigated. An increase in the glycerate concentration at the beginning of growth resulted in decreases in both growth and DHA production.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2010 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
前の記事 次の記事
feedback
Top