Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451
Biochemistry & Molecular Biology Regular Papers
An Active Part of Artemisia sacrorum Ledeb. Suppresses Gluconeogenesis through AMPK Mediated GSK3β and CREB Phosphorylation in Human HepG2 Cells
Hai-Dan YUANGuang-Chun PIAO
Author information
JOURNAL FREE ACCESS

2011 Volume 75 Issue 6 Pages 1079-1084

Details
Abstract

In this study, we investigated the effects of a petroleum ether fraction of Artemisia sacrorum Ledeb. (Compositae) (PEASL) on glucose production through AMP-activated protein kinase (AMPK) activation in human HepG2 cells. PEASL significantly inhibited glucose production in a concentration-dependent manner, and this effect was reversed in the presence of compound C, a selective AMPK inhibitor. PEASL markedly induced the phosphorylation of AMPK and downstream acetyl-CoA carboxylase (ACC) in a time- and concentration-dependent manner. In addition, it markedly increased the phosphorylations of glycogen synthase kinase 3β (GSK3β) in a concentration-dependent manner. In contrast, cAMP reponse element binding protein (CREB), a key transcription factor for gluconeogenic enzyme phosphorylation, decreased in a concentration-dependent manner. PEASL downregulated the gluconeogenesis gene expression of peroxisome proliferation activated receptor-γ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase) in a concentration-dependent manner. In addition, the gene expression of orphan nuclear receptor small heterodimer partner (SHP) increased, also in a concentration-dependent manner. These effects were also abolished by pretreatment with compound C, an AMPK inhibitor. This indicates that PEASL inhibited glucose production via the AMPK-GSK-CREB pathway in HepG2 cells, and these effects appeared to be capable of revealing anti-diabetic mechanism of PEASL in HepG2 cells.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2011 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
Previous article Next article
feedback
Top